Syllabus Module

Dept. Of Mathematics

Session: 2020-2021

Khatra Adibasi Mahavidyalaya

Semester -1			
COURSE	COURSE	COURSE TOPIC	Teachers
CODE	TITLE		
SH/MTH/	Calculus, Geometry & Differential Equation	Unit 1 Hyperbolic functions, higher order derivatives, Leibnitz rule and its applications to problems of types $e^{ax+bsinx}$, $e^{ax+bcosx}$, $(ax + b)^n sinx$, $(ax + b)^n cosx$, concavity and inflection points, envelopes, asymptotes, curve tracing in Cartesian coordinates, tracing in polar coordinates of standard curves, L'Hospital's rule, applications in business, economics and life sciences.	CDG
		Unit 2 Reduction formulae, derivations and illustrations of reduction formulae of the type $\int sin^n x dx$, $\int cos^n x dx$, $\int tan^n x dx$, $\int sec^n x dx \int (logx)^n dx$, $\int sin^m xcos^n x dx$, parametric equations, parameterizing a curve, arc length, arc length of parametric curves, area of surface of revolution. Techniques of sketching conics.	CDG
		Unit 3	RB

		Unit 2	AI
SH/MTH/ 102/ C-2	Algebra	Unit 1 Polar representation of complex numbers, nth roots of unity, De Moivre's theorem for rational indices and its applications. Theory of equations: Relation between roots and coefficients, Transformation of equation, Descartes rule of signs, Cubic and biquadratic equation. Inequality: The inequality involving $AM \ge GM \ge HM$, Cauchy-Schwartz inequality.	AI
		Reflection properties of conics, rotation of axes and second degree equations, classification of conics using the discriminant, polar equations of conics. Spheres. Cylindrical surfaces. Central conicoids, paraboloids, plane sections of conicoids, Generating lines, classification of quadrics, Illustrations of graphing standard quadric surfaces like cone, ellipsoid. Unit 4 Differential equations and mathematical models. General, particular, explicit, implicit and singular solutions of a differential equation. Exact differential equations and integrating factors, separable equations and equations reducible to this form, linear equation and Bernoulli equations, special integrating factors and transformations.	CDG

		Equivalence relations. Functions, Composition of functions, Invertible functions, One to one correspondence and cardinality of a set. Well-ordering property of positive integers, Division algorithm, Divisibility and Euclidean algorithm. Congruence relation between integers. Principles of Mathematical Induction, statement of Fundamental Theorem of Arithmetic.	
		Unit 3 Systems of linear equations, row reduction and echelon forms, vector equations, the matrix equation Ax=b, solution sets of linear systems, applications of linear systems, linear independence.	MN
		Unit 4 Introduction to linear transformations, matrix of a linear transformation, inverse of a matrix, characterizations of invertible matrices. Subspaces of R ⁿ , dimension of subspaces of R ⁿ , rank of a matrix, Eigen values, Eigen Vectors and Characteristic Equation of a matrix. Cayley-Hamilton theorem and its use in finding the inverse of a matrix	MN
SH/MTH/ 103/ GE-1	Calculus, Geometry & Differential Equation (GE T1)	Unit 1 Hyperbolic functions, higher order derivatives, Leibnitz rule and its applications to problems of types $e^{ax+bsinx}$, $e^{ax+bcosx}$, $(ax + b)^n sinx$, $(ax + b)^n cosx$, concavity and inflection points, envelopes, asymptotes, curve tracing in Cartesian coordinates,	CDG

	tracing in polar coordinates of	
	standard curves, L'Hospital's	
	rule, applications in business,	
	economics and life sciences.	
	Unit 2	CDG
	Reduction formulae, derivations	
	and illustrations of reduction	
	formulae of the type $\int \sin^n x \ dx$,	
	$\int cos^n x \ dx$, $\int tan^n x \ dx$,	
	$\int sec^n x \ dx \int (log x)^n \ dx \ ,$	
	$\int sin^m x cos^n x \ dx$, parametric	
	equations, parameterizing a	
	curve, arc length, arc length of	
	parametric curves, area of	
	surface of revolution.	
	Techniques of sketching conics.	
	Unit 3	CDG
	Reflection properties of conics,	
	rotation of axes and second	
	degree equations, classification	
	of conics using the discriminant,	
	polar equations of conics.	
	Spheres. Cylindrical surfaces.	
	Central conicoids, paraboloids,	
	plane sections of conicoids,	
	Generating lines, classification	
	of quadrics, Illustrations of	
	graphing standard quadric	
	surfaces like cone, ellipsoid.	
	Unit 4	CDG
	Differential equations and	G 2 G.
	mathematical models. General,	
	particular, explicit, implicit and	
	singular solutions of a	
	differential equation. Exact	
	differential equations and	
	integrating factors, separable	
	equations and equations	
	reducible to this form, linear	
	equation and Bernoulli	
	equations, special integrating	
	factors and transformations.	
1		

SEMESTER – II

COURSE	COURSE	COURSE TOPIC	Teachers
CODE	TITLE		
SH/MTH/ 201/ C-3	Real Anlysis	Unit 1 Review of Algebraic and Order Properties of R, ε - neighbourhood of a point in R. Idea of countable sets, uncountable sets and uncountability of R. Bounded above sets, Bounded below sets, Bounded Sets, Unbounded sets. Suprema and Infima. Completeness Property of R and its equivalent properties. The Archimedean Property, Density of Rational (and Irrational) numbers in R, Intervals. Limit points of a set, Isolated points, Open set, closed set, derived set, Illustrations of Bolzano- Weierstrass theorem for sets, compact sets in R, Heine-Borel Theorem.	AI
		Sequences, Bounded sequence, Convergent sequence, Limit of a sequence, lim inf, lim sup. Limit Theorems. Monotone Sequences, Monotone Convergence Theorem. Subsequences, Divergence Criteria. Monotone Subsequence Theorem (statement only), Bolzano Weierstrass Theorem for Sequences. Cauchy sequence, Cauchy's Convergence Criterion.	RB
		Unit 3 Infinite series, convergence and	RB

		divergence of infinite series,	
		Cauchy Criterion, Tests for	
		convergence: Comparison test,	
		Limit Comparison test, Ratio	
		Test, Cauchy's nth root test,	
		Integral test. Alternating series,	
		Leibniz test. Absolute and	
		Conditional convergence.	
SH/MTH/	Differential	Unit 1	CDG
202/C-4	Equations and	Lipschitz condition and Picard's	
	Vector Calculus	Theorem (Statement only).	
	vector Calculus	General solution of	
		homogeneous equation of	
		second order, principle of super	
		position for homogeneous	
		equation, Wronskian: its	
		properties and applications,	
		Linear homogeneous and non-	
		homogeneous equations of	
		higher order with constant	
		coefficients, Euler's equation,	
		method of undetermined	
		coefficients, method of variation	
		of parameters.	
		Unit 2	CDG
		Systems of linear differential	
		equations, types of linear	
		systems, differential operators,	
		an operator method for linear	
		systems with constant	
		coefficients,	
		Basic Theory of linear systems	
		in normal form, homogeneous	
		linear systems with constant	
		coefficients: Two Equations in	
		two unknown functions.	
		Unit 3	CDG
		Equilibrium points,	
		Interpretation of the phase	
		plane	
			ī
		Power series solution of a	
		Power series solution of a differential equation about an	

		Unit 4	AI
		Triple product, introduction to	
		vector functions, operations	
		with vector-valued functions,	
		limits and continuity of vector	
		functions, differentiation and	
		integration of vector functions.	
SH/ MTH/	Real Analysis	Unit 1	CDG
203/ GE-2	(GE T3)	Review of Algebraic and Order	
,	,	Properties of R, ε -	
		neighbourhood of a point in R.	
		Idea of countable sets,	
		uncountable sets and	
		uncountability of R. Bounded	
		above sets, Bounded below	
		sets, Bounded Sets, Unbounded	
		sets. Suprema and Infima.	
		Completeness Property of R and	
		its equivalent properties. The	
		Archimedean Property, Density	
		of Rational (and Irrational)	
		numbers in R, Intervals. Limit	
		points of a set, Isolated points,	
		Open set, closed set, derived	
		set, Illustrations of Bolzano-	
		Weierstrass theorem for sets,	
		compact sets in R, Heine-Borel	
		Theorem.	
		Unit 2	CDG
		Sequences, Bounded sequence,	ob a
		Convergent sequence, Limit of a	
		sequence, lim inf, lim sup. Limit	
		Theorems. Monotone	
		Sequences, Monotone	
		Convergence Theorem.	
		Subsequences, Divergence	
		Criteria. Monotone	
		Subsequence Theorem	
		(statement only), Bolzano	
		Weierstrass Theorem for	
		Sequences. Cauchy sequence,	
		Cauchy's Convergence Criterion.	
		Unit 3	CDG
			CDG

		Infinite series, convergence and divergence of infinite series, Cauchy Criterion, Tests for convergence: Comparison test, Limit Comparison test, Ratio Test, Cauchy's nth root test, Integral test. Alternating series, Leibniz test. Absolute and Conditional convergence.	
	1	ESTER - III	
COURSE	COURSE	COURSE TOPIC	Teachers
CODE	TITLE		
SH/MTH/ 301/C-5	Theory of Real Functions & Introduction to Metric Space	Unit 1 Limits of functions (ε - δ approach), sequential criterion for limits, divergence criteria. Limit theorems, one sided limits. Infinite limits and limits at infinity. Continuous functions, sequential criterion for continuity and discontinuity. Algebra of continuous functions. Continuous functions on an interval, intermediate value theorem, location of roots theorem, preservation of intervals theorem. Uniform continuity criteria, uniform continuity criteria, uniform continuity theorem.	CDG
		Unit 2 Differentiability of a function at a point and in an interval, Caratheodory's theorem, algebra of differentiable functions. Relative extrema, interior extremum theorem. Rolle's theorem. Mean value theorem, intermediate value property of derivatives, Darboux's theorem. Applications of mean value	CDG

		theorem to inequalities and	
		approximation of polynomials.	
		Unit 3	RB
		Cauchy's mean value theorem.	
		Taylor's theorem with	
		Lagrange's form of remainder,	
		Taylor's theorem with Cauchy's	
		form of remainder, application	
		of Taylor's theorem to convex	
		functions, relative extrema.	
		Taylor's series and Maclaurin's	
		series expansions of exponential	
		and trigonometric	
		functions, $ln(1 + x)$, $1/ax +$	
		b and $(1 + x)n$. Application of	
		Taylor's theorem to inequalities.	
		Unit 4	RB
		Metric spaces: Definition and	
		examples. Open and closed	
		balls, neighbourhood, open set,	
		interior of a set. Limit point of a	
		set, closed set, diameter of a	
		set, subspaces, dense sets,	
		separable spaces.	
SH/MTH/	Group Theory-I	Unit 1	MN
302/ C-6		Symmetries of a square,	
		Dihedral groups, definition and	
		examples of groups including	
		permutation groups and	
		quaternion groups (through	
		matrices), elementary properties	
		of groups.	
		Unit 2	MN
		Subgroups and examples of	
		subgroups, centralizer,	
		normalizer, centre of a group,	
		product of two subgroups.	
		Unit 3	MN
		Properties of cyclic groups,	
		classification of subgroups of	
		cyclic groups. Cycle notation for	
		permutations, properties of	

		permutations, even and odd permutations, alternating group, properties of cosets, Lagrange's theorem and consequences including Fermat's Little theorem. Unit 4 External direct product of a finite number of groups, normal subgroups, factor groups, Cauchy's theorem for finite abelian groups.	MN
		Unit 5 Group homomorphisms, properties of homomorphisms, Cayley's theorem, properties of isomorphisms. First, Second and Third isomorphism theorems.	MN
SH/MTH /303 /C-7	Numerical Methods Numerical	Unit 1 Algorithms. Convergence. Errors: Relative, Absolute. Round off. Truncation.	AI
	Methods Lab	Unit 2 Transcendental and Polynomial equations: Bisection method, Newton's method, Secant method, Regula-falsi method, fixed point iteration, Newton-Raphson method. Rate of convergence of these methods.	AI
		Unit 3 System of linear algebraic equations: Gaussian Elimination and Gauss Jordan methods. Gauss Jacobi method, Gauss Seidel method and their convergence analysis. LU Decomposition	AI
		Unit 4 Interpolation: Lagrange and Newton's methods. Error bounds. Finite difference operators. Gregory forward and	AI

		backward difference	
		interpolation.	
		Numerical differentiation:	
		Methods based on	
		interpolations, methods based	
		on finite differences.	
		Unit 5	AI
		Numerical Integration: Newton	
		Cotes formula, Trapezoidal rule,	
		Simpson's 1/3rd rule, Simpsons	
		3/8th rule, Weddle's rule, Boole's	
		Rule. Midpoint rule, Composite	
		Trapezoidal rule, Composite	
		Simpson's 1/3rd rule, Gauss	
		quadrature formula.	
		The algebraic eigenvalue	
		problem: Power method.	
		Approximation: Least square	
		polynomial approximation.	
SH/MTH/	Algebra (GET2)	Unit 1	CDG
304/GE-3		Polar representation of complex	
		numbers, nth roots of unity, De	
		Moivre's theorem for rational	
		indices and its applications.	
		Theory of equations: Relation	
		between roots and coefficients,	
		Transformation of equation,	
		Descartes rule of signs, Cubic	
		and biquadratic equation.	
		Inequality: The inequality	
		involving AM≥GM≥HM, Cauchy-	
		Schwartz inequality.	
		Unit 2	CDG
		Equivalence relations.	
		Functions, Composition of	
		functions, Invertible functions,	
		One to one correspondence and	
		cardinality of a set. Well-	
		ordering property of positive	
		integers, Division algorithm,	
		Divisibility and Euclidean	
		algorithm. Congruence relation	
		between integers. Principles of	
		Mathematical Induction,	

		statement of Fundamental	
		Theorem of Arithmetic. Unit 3 Systems of linear equations, row reduction and echelon forms, vector equations, the matrix equation Ax=b, solution sets of linear systems, applications of linear systems, linear	RB
CU/MTU/	Pogramming	Introduction to linear transformations, matrix of a linear transformation, inverse of a matrix, characterizations of invertible matrices. Subspaces of Rn, dimension of subspaces of Rn, rank of a matrix, Eigen values, Eigen Vectors and Characteristic Equation of a matrix. Cayley-Hamilton theorem and its use in finding the inverse of a matrix	RB
SH/MTH / 305/SEC-1	Pogramming using C (New)		AI
	SEME	STER - IV	
COURSE	COURSE	COURSE TOPIC	Teachers
SH/MTH /401/C-8	Riemann Integration and Series of Functions	Unit 1 Riemann integration: inequalities of upper and lower sums, Darbaux integration, Darbaux theorem, Riemann conditions of integrability, Riemann sum and definition of Riemann integral through Riemann sums, equivalence of	MN

	two Definitions.
	Riemann integrability of
	monotone and continuous
	functions, Properties of the
	Riemann integral; definition and
	integrability of piecewise
	continuous and monotone
	functions.
	Intermediate Value theorem for
	Integrals. Fundamental theorem
	of Integral Calculus.
MN	Unit 2
	Improper integrals. Convergence
	of Beta and Gamma functions.
MN	Unit 3
	Pointwise and uniform
	convergence of sequence of
	functions. Theorems on
	continuity, derivability and
	integrability of the limit function
	of a sequence of functions.
	Series of functions;
	Theorems on the continuity and
	derivability of the sum function
	of a series of functions; Cauchy
	criterion for uniform
	convergence and Weierstrass
	M-Test.
MN	Unit 4
	Fourier series: Definition of
	Fourier coefficients and series,
	Reimann Lebesgue lemma,
	Bessel's inequality, Parseval's
	identity, Dirichlet's condition.
	Examples of Fourier expansions
	and summation results for
	series. Unit 5
MN	Power series, radius of
	convergence, Cauchy Hadamard
	Theorem.
	Differentiation and integration

		Theorem; Weierstrass	
OLI /BATLI / 400 / 6	B.0. 1.1.	Approximation Theorem.	
SH/MTH/402/C- 9	Multivariate Calculus	Unit 1 Functions of several variables, limit and continuity of functions	Al
		of two or more variables	
		Partial differentiation, total	
		differentiability and	
		differentiability, sufficient	
		condition for differentiability.	
		Chain rule for one and two	
		independent parameters,	
		directional derivatives, the	
		gradient, maximal and normal	
		property of the gradient, tangent	
		planes, Extream of functions of	
		two variables, method of	
		Lagrange multipliers,	
		constrained optimization	
		problems	
		Unit 2	AI
		Double integration over	
		rectangular region, double	
		integration over non-rectangular	
		region, Double integrals in polar	
		co-ordinates, Triple integrals,	
		Triple integral over a	
		parallelepiped and solid regions.	
		Volume by triple integrals,	
		cylindrical and spherical co-	
		ordinates. Change of variables	
		in double integrals and triple	
		integrals	
		Unit 3	Al
		Definition of vector field,	
		divergence and curl.	
		Line integrals, Applications of	
		line integrals: Mass and Work.	
		Fundamental theorem for line	
		integrals, conservative vector	
		fields, independence of path.	
		Unit 4	Al
		Green's theorem, surface	
		integrals, integrals over	

		parametrically defined surfaces.	
		Stoke's theorem, The	
		Divergence theorem.	
SH/MTH	Ring Theory and	Unit 1	RB
/403/C-10		Definition and examples of	KB
/ 403/ C-10	Linear Algebra-I	rings, properties of rings,	
		subrings, integral domains and	
		fields, characteristic of a ring.	
		Ideal, ideal generated by a	
		subset of a ring, factor rings,	
		operations on ideals, prime and	
		maximal ideals.	
		Unit 2	DD
			RB
		Ring homomorphisms,	
		properties of ring	
		homomorphisms. Isomorphism	
		theorems I, II and III, field of	
		quotients.	
		Unit 3	RB
		Vector spaces, subspaces,	
		algebra of subspaces, quotient	
		spaces, linear combination of	
		vectors, linear span, linear	
		independence, basis and	
		dimension, dimension of	
		subspaces.	
		Unit 4	RB
		Linear transformations, null	
		space, range, rank and nullity of	
		a linear transformation, matrix	
		representation of a linear	
		transformation, algebra of linear	
		transformations. Isomorphisms.	
		Isomorphism theorems,	
		invertibility and isomorphisms,	
		change of coordinate matrix.	
SH/MTH	Differential	Unit 1	CDG
/404/ GE-4	Equations and	Lipschitz condition and Picard's	
	Vector	Theorem (Statement only).	
		General solution of	
	Calculus (GET4)	homogeneous equation of	
		second order, principle of super	
		position for homogeneous	
		equation, Wronskian: its	

		of graphs.	
1			
		bi - partite graphs isomorphism	
		properties of graphs, pseudo graphs, complete graphs,	
405/SEC-2	(SEC T4)	Definition, examples and basic	
SH/MTH /	Graph Theory	Unit 1	RB
011/85711/	0 1	integration of vector functions.	
		functions, differentiation and	
		limits and continuity of vector	
		with vector-valued functions,	
		vector functions, operations	
		Triple product, introduction to	
		Unit 4	CDG
		regular singular point.	
		ordinary point, solution about a	
		differential equation about an	
		Power series solution of a	
		plane	
		Interpretation of the phase	
		Equilibrium points,	CDG
		Unit 3	CDC
		coefficients: Two Equations in two unknown functions.	
		linear systems with constant	
		in normal form, homogeneous	
		Basic Theory of linear systems	
		coefficients,	
		systems with constant	
		an operator method for linear	
		systems, differential operators,	
		equations, types of linear	
		Systems of linear differential	3 2 0
		Unit 2	CDG
		of parameters.	
		coefficients, method of variation	
		method of undetermined	
		higher order with constant coefficients, Euler's equation,	
		homogeneous equations of	
		Linear homogeneous and non-	
		properties and applications,	

Unit 2 Eulerian circuits, Eulerian graph, semi-Eulerian graph, theorems, Hamiltonian cycles, theorems Representation of a graph by matrix, the adjacency matrix, incidence matrix, weighted graph,	RB
Unit 3 Travelling salesman's problem, shortest path, Tree and their properties, spanning tree, Dijkstra's algorithm, Warshall's algorithm.	RB

SEMESTER – V			
COURSE	COURSE	COURSE TOPIC	Teachers
CODE	TITLE		
SH/MTH/	Partial	Unit 1	RB
501/C-11	Differential	Partial Differential Equations –	
	Equations and	Basic concepts and Definitions.	
	-	Mathematical Problems. First-	
	Applications	Order Equations: Classification,	
		Construction and Geometrical	
		Interpretation. Method of	
		Characteristics for obtaining	
		General Solution of Quasi Linear	
		Equations. Canonical Forms of	
		First-order Linear Equations.	
		Method of Separation of	
		Variables for solving first order	
		partial differential equations.	
		Unit 2	RB
		Derivation of Heat equation,	
		Wave equation and Laplace	

	-		T
		equation. Classification of	
		second order linear equations as	
		hyperbolic, parabolic or elliptic.	
		Reduction of second order	
		Linear Equations to canonical	
		forms.	
		Unit 3	RB
		The Cauchy problem, Cauchy-	
		Kowalewskaya theorem, Cauchy	
		problem of an infinite string.	
		Initial Boundary Value Problems.	
		Semi-Infinite String with a fixed	
		end, Semi-Infinite String with a	
		Free end. Equations with non-	
		homogeneous boundary	
		conditions. Non- Homogeneous	
		Wave Equation. Method of	
		separation of variables, Solving	
		the Vibrating String Problem.	
		Solving the Heat Conduction	
		problem	
		Unit 4	RB
		Central force. Constrained	IND.
		motion, varying mass, tangent	
		and normal components of	
		acceleration, modelling ballistics	
		and planetary motion, Kepler's	
		second law.	
SH/MTH/	Group Theory -	Unit 1	MN
502/C-12	. ,	Automorphism, inner	10111
302/ 3 12	•	automorphism, automorphism	
		groups, automorphism groups of	
		finite and infinite cyclic groups,	
		applications of factor groups to	
		automorphism groups,	
		Characteristic subgroups,	
		Commutator subgroup and its	
		properties.	
		Unit 2	MN
		Properties of external direct	IVIIV
		products, the group of units	
		modulo n as an external direct	
		product, internal direct	
		products, Fundamental Theorem	

		of finite abelian groups.	
		Unit 3 Group actions, stabilizers and kernels, permutation representation associated with a given group action. Applications of group actions. Generalized Cayley's theorem. Index theorem.	MN
		Unit 4 Groups acting on themselves by conjugation, class equation and consequences, conjugacy in Sn, p-groups, Sylow's theorems and consequences, Cauchy's theorem, Simplicity of An for n ≥ 5, non-simplicity tests.	MN
SH/MTH / 503/DSE-1	Linear Programming (DSE T1)	Unit 1 Introduction to linear programming problem. Theory of simplex method, graphical solution, convex sets, optimality and unboundedness, the simplex algorithm, simplex method in tableau format, introduction to artificial variables, two - phase method. Big - M method and their comparison.	CD
		Unit 2 Duality, formulation of the dual problem, primal - dual relationships, economic interpretation of the dual. Transportation problem and its mathematical formulation, northwest - corner method, least cost method and Vogel approximation method for determination of starting basic solution, algorithm for solving transportation problem, assignment problem and its mathematical formulation,	CD

		Hungarian method for solving assignment problem. Unit 3 Game theory: formulation of two person zero sum games, solving two person zero sum games, games with mixed strategies, graphical solution procedure, linear programming solution of	CD
SH/MTH / 504 /DSE-2	Probability and Statistics (DSE T4)	games. Unit 1 Sample space, probability axioms, real random variables (discrete and continuous), cumulative distribution function, probability mass/density functions, mathematical expectation, moments, moment generating function, characteristic function, discrete distributions: uniform, binomial, Poisson, geometric, negative binomial, continuous distributions: uniform, normal, exponential.	AI
		Unit 2 Joint cumulative distribution function and its properties, joint probability density functions, marginal and conditional distributions, expectation of function of two random variables, conditional expectations, independent random variables, bivariate normal distribution, correlation coefficient, joint moment generating function and calculation of covariance, linear regression for two variables. Unit 3	AI
		Chebyshev's inequality, statement and interpretation of	/ (1

(weak) law of large numbers	
and strong law of large	
numbers. Central Limit theorem	
for independent and identically	
distributed random variables	
with finite variance, Markov	
Chains, Chapman-Kolmogorov	
equations, classification of	
states.	
Unit 4	AI
Random Samples, Sampling	
Distributions, Estimation of	
parameters, Testing of	
hypothesis.	

SEMESTER - VI

OURSE	COURSE TOPIC	Teachers
TTLE		
Metric Spaces nd Complex nalysis	Unit 1 Metric spaces: Sequences in metric spaces, Cauchy sequences. Complete Metric Spaces, Cantor's theorem. Unit 2 Continuous mappings, sequential criterion and other characterizations of continuity. Uniform continuity. Connectedness, connected subsets of R. Compactness: Sequential compactness, Heine-Borel property, Totally bounded spaces, finite intersection property, and continuous functions on compact sets. Homeomorphism. Contraction mappings. Banach Fixed point	RB
′	ITLE letric Spaces nd Complex	ITLE Idetric Spaces Ind Complex Inalysis Metric spaces: Sequences in metric spaces, Cauchy sequences. Complete Metric Spaces, Cantor's theorem. Unit 2 Continuous mappings, sequential criterion and other characterizations of continuity. Uniform continuity. Connectedness, connected subsets of R. Compactness: Sequential compactness, Heine-Borel property, Totally bounded spaces, finite intersection property, and continuous functions on compact sets. Homeomorphism. Contraction

		ordinary differential equation.	
		Unit 3 Limits, Limits involving the point at infinity, continuity. Properties of complex numbers, regions in the complex plane, functions of complex variable, mappings.	RB
		Derivatives, differentiation formulas, Cauchy-Riemann equations, sufficient conditions for differentiability.	
		Unit 4 Analytic functions, examples of analytic functions, exponential function, Logarithmic function, trigonometric function, derivatives of functions, and definite integrals of functions. Contours, Contour integrals and its examples, upper bounds for moduli of contour integrals. Cauchy- Goursat theorem, Cauchy integral formula.	RB
		Unit 5 Liouville's theorem and the fundamental theorem of algebra. Convergence of sequences and series, Taylor series and its examples.	RB
		Unit 6 Laurent series and its examples, absolute and uniform convergence of power series.	RB
SH/MTH / 602/C-14	Ring Theory and Linear Algebra II	Unit 1 Polynomial rings over commutative rings, division algorithm and consequences, principal ideal domains, factorization of polynomials, reducibility tests, Eisenstein criterion, and	CDG

		unique factorization in Z [x]. Divisibility in integral domains, irreducible, primes, unique factorization domains, Euclidean domains. Unit 2 Dual spaces, dual basis, double dual, transpose of a linear transformation and its matrix in the dual basis, annihilators. Eigen spaces of a linear operator, diagonalizability, invariant subspaces and Cayley-Hamilton theorem, the minimal polynomial for a linear operator.	CDG
		polynomial for a linear operator, canonical forms. Unit 3	CDC
		Inner product spaces and norms, Gram-Schmidt orthogonalisation process, orthogonal complements, Bessel's inequality, the adjoint of a linear operator. Least Squares Approximation, minimal solutions to systems of linear equations. Normal and selfadjoint operators. Orthogonal projections and Spectral theorem.	CDG
SH/MTH / 603/DSE- 3	Number Theory (DSE T7)	Unit 1 Linear Diophantine equation, prime counting function, statement of prime number theorem, Goldbach conjecture, linear congruences, complete set of residues, Chinese Remainder theorem, Fermat's Little theorem, Wilson's theorem.	MN
		Unit 2 Number theoretic functions, sum and number of divisors, totally multiplicative functions, definition and properties of the	MN

		Dirichlet product, the Mobius Inversion formula, the greatest integer function, Euler's phi - function, Euler's theorem, reduced set of residues. some properties of Euler's phifunction. Unit 3 Order of an integer modulo n, primitive roots for primes, composite numbers having primitive roots, Euler's criterion, the Legendre symbol and its properties, quadratic reciprocity, quadratic congruences with composite moduli. Public key encryption, RSA encryption and decryption, the equation $x^2 + y^2 = z^2$, Fermat's Last theorem.	MN
SH/MTH/ 604/DSE-4	Project Work		Al